Electrical & Electronics

Repair or Recycle? Rethinking Electronics Design

Design strategies that balance recyclability and repairability can extend electronics’ lifespan and support circular economy goals.

Often, electronics have a short lifespan. Rapid innovation cycles lead to device replacement, and therefore, the discarding of obsolete devices. Electronic waste (E-waste) is a fast-growing waste stream that contains heavy metals, flame retardants, and other toxicants. Though there are some options for recycling, E-waste recyclability comes with many challenges that limit further adoption. Mixed plastics, hazardous additives, and separation of metals and polymers in E-waste lead to substantial costs and complexities. In 2022, researchers estimated that the United States recycles less than 20% of its E-waste.

Additionally, designing electronics for repairability is often at direct odds with designing for recyclability. When designing with repair in mind, manual disassembly is vital for electronics. Often, ease of manual disassembly leads to difficulties during mechanical separation during recycling. This trade-off highlights a need for design choices that satisfy  both of these constraints.

These fragments electronics, shredded at a recycling facility, contain metal still attached to its plastic housing. Courtesy of Designing Electronics for a Circular Economy: How to balance Repair and Recycling.

What Makes Electronic Parts Suitable for Repair and Recycling?

Ease of removing critical parts of electronics, especially parts that are known to break easily, results in better repairability. Designing electronics that are easily repairable usually means that it is easy to manually disassemble them, too. Still, that does not necessarily mean it would be easier to recycle. On a large scale, E-waste recycling commonly involves shredding, rather than manual disassembly.

The ease of component break-down during shredding varies due to product design and material choice. Some connections, such as friction fits and turn locks, easily break down during shredding. Connections with “material closures” such as glues or soldering, not so much.

You can also read: Nano Molding: The Future of Metal-Plastic Integration in Electronics.

Some connections are better suited for repair than recycling. Courtesy of Designing Electronics for a Circular Economy: How to balance Repair and Recycling.

Guiding Design Choices for a Circular Economy

To improve recyclability, designers should not just consider material choice, but also current waste processing technologies, such as shredding. Each product comes with its own set of design priorities. For electronics with known short lifecycles, recycling may be a higher priority. For repairable products, emphasizing this repairability in design means extending the product’s lifecycle. By integrating closure technologies that are easier to recycle, designers can help prevent these products from entering landfills.

As electronics recycling infrastructure improves, these design approaches may change. For example, a 2022 study at the University of Massachusetts investigated solvent-based processing for the chemical recycling of E-waste. Advances such as this may reduce barriers for E-waste recycling, supporting the circular economy of plastic.

By Julienne Smith | November 5, 2025

Recent Posts

  • 3D Printing/Additive Manufacturing

High-Temperature Photopolymer Inserts for Injection Molding

High-temp DLP/SLA photopolymer inserts enable hybrid tooling, short-run injection molding, and faster iteration with stable,…

2 days ago
  • Extrusion

Reactive Extrusion for PCR Odor Control

Reactive extrusion reduces odor in post-consumer resins by leveraging targeted chemistry and venting to enable…

3 days ago
  • Injection Molding

Injection Mold Fouling: Formulation and Monitoring

Fouling comes from additive volatility and interfacial energetics. Early shifts in cavity-pressure and ejector-force trends…

4 days ago
  • Bioplastics

Biopolymer Seed Coatings to Reduce Microplastics in Agriculture

Biopolymer seed coatings cut agricultural microplastics while maintaining adhesion, dust control, and germination for safer,…

5 days ago
  • Vinyl

Tracking Year-on-Year Increases in Recycled PVC Use

Europe’s PVC industry boosts circularity, increasing recycled PVC use despite weak demand, cutting emissions and…

6 days ago
  • Industry

Plastics 2028: AI, Circularity, and Smart Materials from K-2025

The future of plastics engineering is evolving rapidly, and K-Show 2025 in Düsseldorf showcased groundbreaking…

1 week ago