Composites

Basalt Fibers in Marine Composites: A Reliable Solution?

With the growing demand for sustainable and high-performance materials, basalt fibers have become a promising reinforcement for marine composites.

Basalt fibers show promise as a reinforcement material for marine polymer composites. They offer superior mechanical properties and a lower environmental impact than traditional reinforcements like glass and carbon fibers. However, their long-term performance in seawater requires further study.

You can also read: Redesigning Marine Structures for Sustainability.

Long-Term Seawater Exposure

French researchers conducted a study to evaluate basalt fiber and basalt/epoxy composite degradation in seawater. The fibers were submerged at 15ºC and 40ºC for 11 months, and the composites at 4ºC, 25ºC, 40ºC, and 60ºC for 7.5 years. The study assessed changes in physical, chemical, and mechanical properties. The results of this rigorous analysis provide critical insights into the durability of basalt-based materials in harsh marine conditions.

Mechanical Performance

Basalt fibers showed a sharp initial loss in tensile strength, stabilizing at a temperature-dependent plateau. On the other hand, after 7.5 years, basalt/epoxy composites showed reductions in interlaminar shear strength of 18% at 25°C and 25% at 40°C. These reductions indicated a weakened fiber-matrix interface due to surface degradation. However, the epoxy matrix provided partial protection, mitigating fiber degradation compared to standalone fibers. Cracks and defects in the matrix accelerated water diffusion, leading to localized mechanical property loss and fiber deterioration.

The image illustrates the change in strength for samples aged at 15°C in seawater, 40°C in seawater, and 40°C in deionized water. Courtesy of Basalt fibre degradation in seawater and consequences for long term composite reinforcement.

Corrosive Effects

Water absorption was temperature-dependent. Below 60°C, the saturation was reversible, but continuous uptake occurred at higher temperatures, causing matrix degradation and yellowing. SEM and EPMA analyses identified surface corrosion and iron oxide-rich layers on fibers. The oxidized layer initially protected the fibers but degraded the fiber-matrix interface over time. Fiber degradation gradients showed that the matrix slowed water diffusion. However, cracks accelerated deterioration, emphasizing the interplay of chemical and physical processes in long-term seawater exposure.

The image illustrates the varying water absorption curves at different temperatures for (a) basalt/epoxy, and (b) E-glass/epoxy. Courtesy of Basalt fibre degradation in seawater and consequences for long term composite reinforcement.

Future Research Requires Enhancing Durability

Basalt fibers exhibit favorable mechanical properties and some stability in seawater. However, prolonged exposure leads to significant strength degradation due to surface corrosion and matrix interactions. The epoxy matrix partially protected the fibers by slowing water diffusion, but it did not fully prevent interface weakening. Further research is needed to improve durability. Developing advanced protective coatings or optimizing composite formulations could address these challenges, enhancing basalt-based materials’ reliability and sustainability in demanding marine environments.

By Laura Gonzalez | January 13, 2025

Recent Posts

  • Industry 4.0

Smart Manufacturing: Precision Heat Control via Mechatronics and ML

Mechatronics technology (MT) and improved machine learning (ML) algorithms improve rubber and plastic manufacturing temperature…

14 hours ago
  • Film
  • Flexible Packaging
  • Foam Processing
  • Food Packaging
  • Industry
  • Materials
  • Packaging
  • Process
  • Recycling
  • Resins
  • Sustainability
  • Trending

Foamed Films Offer a New Solution for Recyclable Packaging

Researchers at ANTEC® 2025 showed that foamed multilayer blown films can achieve densities compatible with…

1 day ago
  • Electrical & Electronics

Simulation-Driven Optimization of Epoxy Potting Processes

Numerical simulations enhance the reliability and efficiency of epoxy potting processes in electronics.

2 days ago
  • Automotive & Transportation

Painted Plastics Recycling in Automotives

Automotive plastics pose one of today’s biggest recycling challenges and hold the key to tomorrow’s…

3 days ago
  • Industry

Managing Recycling Uncertainty with Data-Driven Models

A data-driven approach can promote adaptability by predicting market demand and recycling rate uncertainty.

4 days ago
  • Composites

Why Carbon Fiber Reinforcement Works—or Doesn’t—in 3D Printing

ANTEC® 2025 research reveals critical insights about when and why carbon fiber reinforcement succeeds or…

7 days ago