Industry

Mold Manufacturing: How to Choose the Best Alloy

Selecting the right alloy for mold manufacturing is essential for meeting industry demands for durability, thermal conductivity, and manufacturability.

In recent years, mold makers have shifted away from traditional materials like P20 steel to explore newer, high-performance alloys better suited to specific manufacturing needs.

The advancement of digital technologies has transformed the plastic manufacturing industry, especially in the field of mold-making. The choice of material alloys for molds has become crucial, as it can significantly influence the success or failure of a project.

You can also read: How to Increase Injection Mold Life

Mold Makers Choices

Mold makers often seek materials with unique properties that fulfill specialized requirements. For instance, alloys that handle high glass-fiber content—such as those required by International Mold Steel Inc. for molds processing materials with 48% glass fiber—often demand a coating or a higher hardness level than typical steels like H13 or S7. Similarly, thin-walled injection molding applications benefit from alloys with high edge retention, reducing wear and enhancing production efficiency. While traditional materials like P20 and H13 remain popular, mold makers are increasingly using pre-hardened alloys and materials that facilitate quicker and more efficient machining processes.

Cooling accounts for the largest portion of cycle time in molding. To speed up part removal from the mold, optimal heat dissipation is essential. However, manufacturing constraints sometimes prevent cooling channels from being placed close to the entire mold surface. To address this, materials like copper-beryllium alloys and 3D-printed steel can be used to improve thermal management. Naturally, machining capabilities and return on investment should also be carefully evaluated.

You can also read: Tooling Digitalization: Basics

Getting the Best of the Microstructure and Performance

Highly alloyed steels are difficult to produce using conventional melting because elements like chromium, tungsten, and molybdenum tend to segregate, forming brittle carbide networks during slow solidification. Even hot working does not fully resolve this, often leaving a coarse and uneven microstructure. The atomization process addresses this by creating fine powder particles that solidify in fractions of a second, minimizing segregation and producing a more uniform structure. Over time, powder metallurgy has incorporated advancements in atomizing and encapsulation, achieving refined powder size, shape, and cleanliness. Once these powders are compacted and forged, they yield steel with significantly improved mechanical properties, including over 20% increases in both bend and fatigue strength, making it superior to conventional steels.

Comparison of different alloys according to the most important requirements for mold manufacturing.

Mold manufacturing is all about the costs?

In summary, the selection of alloy materials in mold manufacturing is far more than a question of price. Factors such as project requirements, material durability, and thermal conductivity significantly affect mold performance and, consequently, production efficiency. By staying informed on the latest alloy developments, mold makers can enhance mold performance, reducing cycle times and operational costs. But material selection isn’t just about durability—it’s also about maximizing thermal efficiency. Next, we’ll examine how thermal conductivity can impact mold performance.

You can also read: A Concise Review on Materials for Injection Moulds and Their Conventional and Non-Conventional Machining Processes

By Andres Urbina | November 22, 2024

Recent Posts

  • Film
  • Flexible Packaging
  • Foam Processing
  • Food Packaging
  • Industry
  • Materials
  • Packaging
  • Process
  • Recycling
  • Resins
  • Sustainability
  • Trending

Foamed Films Offer a New Solution for Recyclable Packaging

Researchers at ANTEC® 2025 showed that foamed multilayer blown films can achieve densities compatible with…

21 hours ago
  • Electrical & Electronics

Simulation-Driven Optimization of Epoxy Potting Processes

Numerical simulations enhance the reliability and efficiency of epoxy potting processes in electronics.

1 day ago
  • Automotive & Transportation

Painted Plastics Recycling in Automotives

Automotive plastics pose one of today’s biggest recycling challenges and hold the key to tomorrow’s…

2 days ago
  • Industry

Managing Recycling Uncertainty with Data-Driven Models

A data-driven approach can promote adaptability by predicting market demand and recycling rate uncertainty.

3 days ago
  • Composites

Why Carbon Fiber Reinforcement Works—or Doesn’t—in 3D Printing

ANTEC® 2025 research reveals critical insights about when and why carbon fiber reinforcement succeeds or…

6 days ago
  • People

Breaking Barriers: Women in Engineering at PET Technologies

At PET Technologies, women are not only challenging stereotypes. They're driving innovation and shaping the…

7 days ago