Process

Laser Printed Polymers: 3D Printing without Solvents

Researchers at the KTH Royal Institute of Technology and Stockholm University in Sweden have unlocked a game-changing potential in 3D printing technology.

By hacking into a 3D printer, they’ve transformed it into a versatile tool akin to a laser printer. It’s capable of printing various polymers without the need for solvents, chemicals, or stringent clean room conditions.

3D printing and additive manufacturing have revolutionized how objects are created, from intricate structures to complex components, without the constraints of traditional production methods. However, its reliance on specific chemicals and controlled environments has limited its application in certain industries, particularly aerospace and medical devices.

Simplifying Prototyping with Laser Polymer Printing

Traditional methods of printing polymers for flexible electronic devices have been hindered by the requirements of clean rooms and specialized inks, making rapid prototyping costly and time-consuming. Recognizing this bottleneck, researchers sought a more accessible solution to advance bioelectronic technologies.

Erica Zeglio, faculty researcher with Digital Futures, left, shows a finished transistor. At right is KTH Professor Frank Niklaus.

By leveraging ultrafast laser pulses, researchers bypassed the need for pristine environments, enabling swift prototyping of microscale devices critical for medical implants and wearable electronics. This breakthrough eliminates the time-consuming lift-off processes and environmentally harmful solvents associated with conventional 3D printing methods.

Applications and Advantages

The newfound approach not only accelerates prototyping but also paves the way for developing novel materials and enhancing existing ones. Moreover, it offers a sustainable alternative by eliminating the use of non-eco-friendly solvents and developer baths, making it a greener option for manufacturing.

“Current methods rely on expensive and unsustainable cleanroom practices,” Erica Zeglio, faculty researcher with Digital Futures says. “The method we proposed here doesn’t.”

With the potential to revolutionize soft electronic device manufacturing, this innovative 3D printing method promises broader accessibility and affordability in the production of advanced technologies. Finally, by bridging the gap between laboratory research and practical applications, it marks a significant step forward in the democratization of technology.

By Plastics Engineering | March 19, 2024

Recent Posts

  • Medical

Polymers in Cancer Treatment: Innovations and Applications

In oncology, polymers have become powerful tools for boosting cancer treatment efficacy and patient compliance.

1 day ago
  • Industry

Revolutionizing Textiles: Innovative Coatings for a Cool-Touch Effect

AQUACHILL™ Dispersion coating emerges as an innovative solution to address cool-touch performance in bedding clothes.

2 days ago
  • Industry

Advanced Polymer Solutions for Toxic Gas Removal

Recent research has unveiled the potential of polymer materials as effective catalysts in environmental remediation,…

3 days ago
  • Industry

Understanding Impact Damage on Single-Ply TPO Membrane Roofing

Did you know that during a hailstorm, your home's roof is at risk of damage?…

4 days ago
  • Industry

Cotton Transformed: Next-Gen Innovation with Conductive Fibers

Researchers at Washington State University have developed an exciting new conductive, cotton-based fiber that melds…

5 days ago
  • Industry

Innovative Hydrogel Coatings for Medical Catheters

A recent study introduces hydrogel coatings for medical catheters to significantly reduce friction and prevent…

5 days ago