Polyethylene

Poly(Phenylene Ether) / High Impact Polystyrene (PPE+HIPS) Fatigue Resistance

The robustness of materials under cyclic loading is a critical factor often overshadowed by their tensile strength. Plastics, by nature, exhibit lower fatigue strength than their measured tensile strength, emphasizing the need for meticulous fatigue testing in material selection processes.

A recent exploration into the intricacies of Poly(phenylene ether) / High impact polystyrene (PPE+HIPS) sheds light on the often-neglected realm of fatigue resistance. Samples, crafted through injection molding using both single and dual gate designs, served as the canvas for investigating the profound impact of production artifacts. The focus was specifically on knit lines, chosen as representative imperfections to scrutinize their influence on material properties.

Tensile testing emerged as an initial revelation, showcasing an intriguing dichotomy. The modulus, a key parameter in material characterization, remained impervious to the presence of knit lines. However, a nuanced effect surfaced in the ultimate tensile strength, revealing marginal alterations attributed to the imperfections.

The real revelation unfolded during fatigue testing, where the material’s endurance under cyclic loading came into sharp focus. A discernible discrepancy emerged in the strength between samples, distinctly correlated with the presence of knit lines. The findings underscored a substantial reduction in fatigue resistance, serving as a pivotal revelation often overlooked in the material selection paradigm.

This study not only accentuates the critical importance of fatigue testing but also accentuates the need for a comprehensive understanding of how production artifacts, such as knit lines, intricately influence the mechanical behavior of plastics. As the field of plastics engineering advances, such insights are paramount in refining material selection processes and ensuring the optimal performance of plastic components in real-world applications.

To learn more on this topic, attend ANTEC 2024 in St. Louis. Jeff Jansen, The Madison Group will be presenting, “Effects of Knit Lines of the Long-term Performance Properties of Modified Poly(phenylene ether)“, co-authored by Andy Simon of TA Instruments on Thursday, March 7.

By Plastics Engineering | January 11, 2024

Recent Posts

  • Industry

Plastics Geo-Operations: Co-Pyrolysis Pathways for Carbon Capture

Circularity delays emissions, but geo-operations target mitigation by redirecting carbon from plastics into long-term geosphere…

11 hours ago
  • PFAS

EU PFAS Restriction Update: ECHA Consultation in 2026

The European Chemicals Agency (ECHA) met to re-evaluate its 2023 proposal regarding per- and polyfluoroalkyl…

1 day ago
  • Microplastics

Sedimentology-Inspired Classification for Plastic Waste

Drawing on sedimentology, researchers have proposed a novel classification scheme for plastic waste of all…

2 days ago
  • Packaging

Bold Minimalism in Packaging: Clarity That Wins Attention

Bold minimalism uses negative space, typography, and color blocks to improve shelf impact and thumbnail…

5 days ago
  • Industry

Upcycling of Polyolefins Through C–H Bond Activation

Polyolefins define modern plastics, but their chemical stability now drives a new search for smarter…

6 days ago
  • Thermoplastics

Advancing Fire Performance with Flame-Retardant Fiber Reinforced Thermoplastic Composites

Fire performance of materials used in building and construction applications plays a critical role in…

1 week ago