Polyethylene

Poly(Phenylene Ether) / High Impact Polystyrene (PPE+HIPS) Fatigue Resistance

The robustness of materials under cyclic loading is a critical factor often overshadowed by their tensile strength. Plastics, by nature, exhibit lower fatigue strength than their measured tensile strength, emphasizing the need for meticulous fatigue testing in material selection processes.

A recent exploration into the intricacies of Poly(phenylene ether) / High impact polystyrene (PPE+HIPS) sheds light on the often-neglected realm of fatigue resistance. Samples, crafted through injection molding using both single and dual gate designs, served as the canvas for investigating the profound impact of production artifacts. The focus was specifically on knit lines, chosen as representative imperfections to scrutinize their influence on material properties.

Tensile testing emerged as an initial revelation, showcasing an intriguing dichotomy. The modulus, a key parameter in material characterization, remained impervious to the presence of knit lines. However, a nuanced effect surfaced in the ultimate tensile strength, revealing marginal alterations attributed to the imperfections.

The real revelation unfolded during fatigue testing, where the material’s endurance under cyclic loading came into sharp focus. A discernible discrepancy emerged in the strength between samples, distinctly correlated with the presence of knit lines. The findings underscored a substantial reduction in fatigue resistance, serving as a pivotal revelation often overlooked in the material selection paradigm.

This study not only accentuates the critical importance of fatigue testing but also accentuates the need for a comprehensive understanding of how production artifacts, such as knit lines, intricately influence the mechanical behavior of plastics. As the field of plastics engineering advances, such insights are paramount in refining material selection processes and ensuring the optimal performance of plastic components in real-world applications.

To learn more on this topic, attend ANTEC 2024 in St. Louis. Jeff Jansen, The Madison Group will be presenting, “Effects of Knit Lines of the Long-term Performance Properties of Modified Poly(phenylene ether)“, co-authored by Andy Simon of TA Instruments on Thursday, March 7.

By Plastics Engineering | January 11, 2024

Recent Posts

  • Composites

Natural and Mineral Fillers Improve UV Stability in Rotomolded Polyethylene

Natural and mineral fillers enhance UV resistance in rotomolded polyethylene, reducing surface oxidation and improving…

7 hours ago
  • 3D Printing/Additive Manufacturing

Customizable, 3D-Printable Non-Pneumatic Tires for Wheelchair Use

These honeycomb flexible-spoke non-pneumatic tires (FS-NPT) bring more comfort to wheelchair users.

2 days ago
  • Blow Molding

Custom Blow Molding Machines Redefine Packaging Efficiency

Manufacturers are shifting from standard blow molding systems to customized equipment, improving performance, flexibility, and…

3 days ago
  • Aerospace

Designing the World’s Largest Aircraft Through Smart Structural Analysis

Radia’s WindRunner, the world’s largest aircraft, advances with Collier Aerospace’s engineering tools for faster, lighter,…

4 days ago
  • Energy Generation

Capturing CO₂ with Recycled Household Plastics

Mixed plastic waste can be transformed into activated carbon through microwave pyrolysis, improving CO₂ capture…

5 days ago
  • Automotive & Transportation

On Track to Better Performance: Composites for Railroad Ties

Recycled plastic composites are transforming railroad ties, offering higher strength, longer life, and reduced train…

6 days ago