3D Printing/Additive Manufacturing

3D-Printed Recyclable Polyolefin Aerogel Filter for Air Filtration

Innovative Thermoplastic Aerogel Filter Media for Air Filtration

In a groundbreaking endeavor, mechanically recyclable thermoplastic materials were harnessed to craft lightweight and highly efficient aerogel filter media for air filtration. Leveraging the fused filament fabrication (FFF) 3D printing technique, this project focuses on creating an all-polyolefin composite filter media.

The filter media comprises isotactic polypropylene (iPP) gyroid structure frameworks and high-density polyethylene (HDPE) aerogel infill. The utilization of 3D printing filaments, extruded from HDPE and PP blends, ensures printability and recyclability within the polyolefin waste circulation.

Aerogel Micromorphology and Structure

To enhance critical gelation concentration determination, various solid content ratios of HDPE aerogel were prepared. Aerogel micromorphology was scrutinized through porosity determination and Brunauerˆ’Emmettˆ’Teller (BET) nitrogen adsorption analysis, revealing lamellar platelets in the crystalline region of HDPE aerogel.

Investigating the infill density of 3D-printed iPP gyroid frameworks, the study delves into its impact on media strength and filtration properties. Compression tests demonstrate a remarkable improvement in compressive modulus, enhancing the overall efficiency of the filter media.

Filtration Efficiency and Standard Compliance

The developed all-polyolefin composite filter media exhibits superior filtration efficiency compared to commercial surgical masks, reaching the standard for high-efficiency particulate absorption (HEPA) filters. The smaller pore size and intricate air path contribute to this heightened efficiency.

The incorporation of up to 30% HDPE in PP blends without compatibilizers affirms proper 3D printability and minimal warpage, showcasing a sustainable approach to recycling waste polyolefin materials. This study unveils a plausible method for transforming discarded materials into value-added products through both melt and wet processing.

To learn more on this topic, attend ANTEC 2024 in St. Louis. Leyao Wu, Ph.D. Candidate, University of Akron will be presenting, “3D Printing Aided Fabrication of Recyclable Polyolefin Aerogel Composite Filter for Airborne Particle Filtration“, on Tuesday, March 5.

By Plastics Engineering | January 22, 2024

Recent Posts

  • Industry

Upcycling of Polyolefins Through C–H Bond Activation

Polyolefins define modern plastics, but their chemical stability now drives a new search for smarter…

15 hours ago
  • Thermoplastics

Advancing Fire Performance with Flame-Retardant Fiber Reinforced Thermoplastic Composites

Fire performance of materials used in building and construction applications plays a critical role in…

1 day ago
  • Design

Beauty Packaging Design for Social Commerce and Gen Z

Social commerce shifts beauty packaging into feeds. Engineers must control gloss, haze, defects, and durability…

2 days ago
  • Microplastics

Bio-Based Media for Micro- and Nanoplastics Removal

Green coagulation and nanocellulose foams improve microplastic removal, yet integration challenges include clogging and media…

3 days ago
  • Recycling

Printable Chipless RFID Helps Sort Plastics—and Washes Off Later

Printable chipless RFID tags using MXene inks enable remote sorting and then dissolve in a…

4 days ago
  • Artificial Intelligence

Active Learning Speeds Discovery of Antimicrobial Polymers

Machine learning (ML) enables rapid design of antimicrobial peptide (AMP)-mimetic polymers to treat bacterial infections.

7 days ago