Bioplastics

Switchgrass Bioplastics: Researcher Transforms Sustainable Biomass into Eco-Friendly Alternatives

As plastic waste continues to pose a global environmental threat, researchers are exploring sustainable alternatives to traditional petroleum-based plastic. Bioplastics, which mimic the qualities of conventional plastic but are made from natural materials, emerge as a promising solution. Dr. Srinivas Janaswamy, an associate professor at South Dakota State University, is at the forefront of bioplastic development, leveraging agricultural byproducts like avocado peels and coffee grounds to create biodegradable films.

In a recent breakthrough, Janaswamy’s research team successfully produced a robust and transparent biodegradable film using switchgrass, a native North American tallgrass. Switchgrass, abundant in the United States and composed of approximately 58% lignocellulosic material, becomes an ideal resource for developing plastic alternatives. The study, titled “Biodegradable films from the lignocellulosic residue of switchgrass,” showcased the films’ transparency, high tensile strength, and complete biodegradability within 40 days with 30% soil moisture.

The primary challenge in replacing traditional plastics lies in their inability to degrade, taking over 700 years to break down naturally. Bioplastics offer a more sustainable option, breaking down in a fraction of that time and significantly reducing plastic waste in the environment. Janaswamy’s switchgrass-based films hold promise in this regard, combining strength, transparency, and biodegradability.

While the films exhibited lower elongation compared to synthetic counterparts, Janaswamy sees potential improvements by exploring the use of plasticizers in future studies. The switchgrass-based biodegradable films not only contribute to addressing the plastic waste crisis but also present an opportunity for farmers to generate additional income. By utilizing underused or unused agricultural biomass, this research aligns with the vision of a circular rural economy—a sustainable, economical, and environmentally friendly solution to the challenges posed by traditional plastics.

Dr. Janaswamy envisions these films as part of a broader initiative to design reusable, recyclable, and compostable materials, contributing to a more sustainable and environmentally conscious future.

By Plastics Engineering | December 27, 2023

Recent Posts

  • 3D Printing/Additive Manufacturing

Customizable, 3D-Printable Non-Pneumatic Tires for Wheelchair Use

These honeycomb flexible-spoke non-pneumatic tires (FS-NPT) bring more comfort to wheelchair users.

7 hours ago
  • Blow Molding

Custom Blow Molding Machines Redefine Packaging Efficiency

Manufacturers are shifting from standard blow molding systems to customized equipment, improving performance, flexibility, and…

1 day ago
  • Aerospace

Designing the World’s Largest Aircraft Through Smart Structural Analysis

Radia’s WindRunner, the world’s largest aircraft, advances with Collier Aerospace’s engineering tools for faster, lighter,…

2 days ago
  • Energy Generation

Capturing CO₂ with Recycled Household Plastics

Mixed plastic waste can be transformed into activated carbon through microwave pyrolysis, improving CO₂ capture…

3 days ago
  • Automotive & Transportation

On Track to Better Performance: Composites for Railroad Ties

Recycled plastic composites are transforming railroad ties, offering higher strength, longer life, and reduced train…

4 days ago
  • Aerospace

Stress Control in Carbon Fiber Aerospace Components

Carbon Fiber Reinforced Plastic (CFRP) is replacing metal in many aerospace applications, and controlling internal…

5 days ago