Industry

AI for Enhanced Materials Development and Manufacturing

AI has become an important tool for the development of new materials, enabling R&D scientists to develop new materials with improved properties and functionalities.

Data analysis and prediction

A significant form of AI’s contribution is data analysis. By sorting through large data sets, the tool identifies patterns and connections, enabling scientists to understand material properties more efficiently without the need for extensive experiments. AI accelerates the development of new materials and also facilitates rapid prototyping by simulating materials without the need for extensive physical testing.

Some companies such as Alchemy provide valuable information that helps scientists and engineers identify patterns and develop new formulations more efficiently. For example, by overlaying data from the entire packaging production process, Alchemy’s tool can predict packaging or material failure, shelf life, spoilage and other critical properties. Better predictions mean fewer test cycles, which translates into faster development and scale-up.

Another example of this emerging trend is scientists at the National Renewable Energy Laboratory (NREL), who developed a machine learning tool, called PolyID (Polymer Inverse Design), to help users find the most sustainable polymers possible for various high-performance applications. This tool allows the user to sift through millions of possible polymer designs to create a short list of candidates for any application.

In addition, Hitachi High-Tech has been applying some self-developed AI tools in its research process to reduce compound selection and simulation time.

Efficiency and intelligent manufacturing

On the other hand, AI has been widely used for intelligent manufacturing, which includes real-time variable control, defect reduction, and improving overall efficiency in production. Also, AI-based inspection systems ensure the quality of materials by detecting defects and anomalies during the manufacturing process.

Another role developed for AI in materials science is to help aggregate and synthesize information from various sources, facilitating collaboration between researchers and institutions. This collaborative effort accelerates materials development, as researchers can work together more effectively.

In essence, AI is not just a tool, it is a key player in shaping the future of materials engineering. Its integration enables smarter, faster, and more sustainable approaches to creating materials with diverse applications across industries.

By Juliana Montoya | December 18, 2023

Recent Posts

  • PFAS

EU PFAS Restriction Update: ECHA Consultation in 2026

The European Chemicals Agency (ECHA) met to re-evaluate its 2023 proposal regarding per- and polyfluoroalkyl…

10 hours ago
  • Microplastics

Sedimentology-Inspired Classification for Plastic Waste

Drawing on sedimentology, researchers have proposed a novel classification scheme for plastic waste of all…

1 day ago
  • Packaging

Bold Minimalism in Packaging: Clarity That Wins Attention

Bold minimalism uses negative space, typography, and color blocks to improve shelf impact and thumbnail…

4 days ago
  • Industry

Upcycling of Polyolefins Through C–H Bond Activation

Polyolefins define modern plastics, but their chemical stability now drives a new search for smarter…

5 days ago
  • Thermoplastics

Advancing Fire Performance with Flame-Retardant Fiber Reinforced Thermoplastic Composites

Fire performance of materials used in building and construction applications plays a critical role in…

6 days ago
  • Design

Beauty Packaging Design for Social Commerce and Gen Z

Social commerce shifts beauty packaging into feeds. Engineers must control gloss, haze, defects, and durability…

6 days ago