Thermoplastics

Advancing PVC: A Safe and Eco-Friendly Approach to Enhance Thermal Stability

Polyvinyl chloride (PVC) stands tall among commercial plastics, but its thermal instability at processing temperatures poses challenges. To fortify PVC products against high temperatures, conventional heat stabilizers are often employed, yet they come with toxic baggage harmful to both humans and the environment.

In a groundbreaking study, a revolutionary solution is presented—a blend of calcium/zinc stearate heat stabilizer and green Expandable graphite (EG)—crafted through a safe hydrothermal process with a focus on non-toxic, environmentally friendly additives.

The investigation delves into the thermal stability of PVC using advanced techniques such as Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) for scrutinizing the heat stabilizer structures. Mechanical properties are assessed using universal testing equipment, while thermal gravimetric analysis (TGA) provides crucial insights.

Process of polyvinyl chloride film flow sheet through roll milling.

Results

TGA results unveil a significant improvement in thermal stability, with a mere 43.49% weight loss at 342°C for the Ca/Zn-stearate sample compared to a substantial 55.87% at 260°C for the EG-incorporated sample. Differential scanning calorimetry showcases a remarkable 67°C increase in the glass transition temperature, affirming the enhanced thermal stability of PVC. Mechanical tests substantiate this, revealing higher tensile strength and elongation at break for samples with EG.

Beyond thermal stability, the burning test underlines the resilience of EG-containing samples, retaining color and structure even after exposure to 180°C heat. This innovative approach not only boosts PVC’s thermal stability but also aligns seamlessly with eco-friendly principles, presenting a promising avenue for elevating PVC properties sustainably.

You can read more about this topic in the article “Utilizing a blend of expandable graphite and calcium/zinc stearate as a heat stabilizer environmentally friendly for polyvinyl chloride” by Ashraf MorsyAbbas AnwarHossam AnwarH. Abdel-HamidAya Soliman, published in the November 2023 issue of SPE Polymers.

By Plastics Engineering | December 22, 2023

Recent Posts

  • Medical

Polymers in Cancer Treatment: Innovations and Applications

In oncology, polymers have become powerful tools for boosting cancer treatment efficacy and patient compliance.

1 day ago
  • Industry

Revolutionizing Textiles: Innovative Coatings for a Cool-Touch Effect

AQUACHILL™ Dispersion coating emerges as an innovative solution to address cool-touch performance in bedding clothes.

3 days ago
  • Industry

Advanced Polymer Solutions for Toxic Gas Removal

Recent research has unveiled the potential of polymer materials as effective catalysts in environmental remediation,…

3 days ago
  • Industry

Understanding Impact Damage on Single-Ply TPO Membrane Roofing

Did you know that during a hailstorm, your home's roof is at risk of damage?…

4 days ago
  • Industry

Cotton Transformed: Next-Gen Innovation with Conductive Fibers

Researchers at Washington State University have developed an exciting new conductive, cotton-based fiber that melds…

5 days ago
  • Industry

Innovative Hydrogel Coatings for Medical Catheters

A recent study introduces hydrogel coatings for medical catheters to significantly reduce friction and prevent…

5 days ago