Composites

A Multiscale Approach for 3D4d Braided Composite Shafts

The intricate mechanical properties of three-dimensional (3D) braided composites hold both mystery and promise. Particularly, understanding the nuanced multi-scale damage mechanisms in 3D four-directional (3D4d) braided composite shafts has been a challenge—until now.

In this article, we present a groundbreaking shell-based multiscale finite element model designed to predict compressive and torsional properties effectively. The key innovation lies in the development of a universal tubular unit cell, where the equivalent ply angle is intricately linked to yarn structures. Using deformation gradient theory and Nanson’s formula from continuum mechanics, our model derives the equivalent ply angle through local braiding and horizontal orientation angles, and the elastic properties of each equivalent ply through a stiffness averaging method.

Implementing LaRC04 failure criteria and an energy-based damage evolution law, we characterize the damage behaviors of the equivalent UD-ply. Experimental validation demonstrates excellent agreement between failure morphologies and load–displacement curves of finite element analysis (FEA) and experimental results.

Unveiling the major failure modes—fiber tension and compression damages under compressive and torque loads, respectively—the model provides an efficient tool for the design and manufacturing of 3D4d braided composite shafts. The article concludes with a comprehensive parametric study, contributing meaningful insights to the broader landscape of relevant studies.

This research not only advances our understanding of the mechanical intricacies of 3D4d braided composites but also offers a practical and efficient tool for engineers to design and manufacture these shafts with desired mechanical properties.

You can learn more about this topic in the article “A novel shell-based hierarchical multiscale model for studying three-dimensional four-directional braided composite shafts” by Ya Wang, Zhi-Jian Li, Zheng-Guo Liu, and Yun-Peng Yi, (Polymer Composites. 2023;44:7384-7417, DOI: 10.1002/pc.27632) is chosen for the November 2023 issue of PC. This paper provides a tool for understanding 3D4d braided composite shafts, and therefore allows the design and manufacture  of these shafts with desirable mechanical properties. The authors validated the proposed model experimentally, and observed good agreement between the failure morphologies and load–displacement curves of FEA and experimental results.

By Plastics Engineering | December 19, 2023

Recent Posts

  • Medical

Polymers in Cancer Treatment: Innovations and Applications

In oncology, polymers have become powerful tools for boosting cancer treatment efficacy and patient compliance.

23 hours ago
  • Industry

Revolutionizing Textiles: Innovative Coatings for a Cool-Touch Effect

AQUACHILL™ Dispersion coating emerges as an innovative solution to address cool-touch performance in bedding clothes.

2 days ago
  • Industry

Advanced Polymer Solutions for Toxic Gas Removal

Recent research has unveiled the potential of polymer materials as effective catalysts in environmental remediation,…

3 days ago
  • Industry

Understanding Impact Damage on Single-Ply TPO Membrane Roofing

Did you know that during a hailstorm, your home's roof is at risk of damage?…

3 days ago
  • Industry

Cotton Transformed: Next-Gen Innovation with Conductive Fibers

Researchers at Washington State University have developed an exciting new conductive, cotton-based fiber that melds…

4 days ago
  • Industry

Innovative Hydrogel Coatings for Medical Catheters

A recent study introduces hydrogel coatings for medical catheters to significantly reduce friction and prevent…

5 days ago